Copied to
clipboard

G = C22×A5order 240 = 24·3·5

Direct product of C22 and A5

direct product, non-abelian, not soluble, A-group

Aliases: C22×A5, SmallGroup(240,190)

Series: ChiefDerived Lower central Upper central

C1C2C22 — C22×A5
A5 — C22×A5
A5 — C22×A5
C1C22

Subgroups: 601 in 71 conjugacy classes, 10 normal (4 characteristic)
C1, C2, C2, C3, C22, C22, C5, S3, C6, C23, D5, C10, A4, D6, C2×C6, C24, D10, C2×C10, C2×A4, C22×S3, C22×D5, C22×A4, A5, C2×A5, C22×A5
Quotients: C1, C2, C22, A5, C2×A5, C22×A5

Character table of C22×A5

 class 12A2B2C2D2E2F2G35A5B6A6B6C10A10B10C10D10E10F
 size 111115151515201212202020121212121212
ρ111111111111111111111    trivial
ρ21-11-1-111-11111-1-1-1-1-1-111    linear of order 2
ρ31-1-1111-1-1111-1-11-1-111-1-1    linear of order 2
ρ411-1-1-11-11111-11-111-1-1-1-1    linear of order 2
ρ53-33-31-1-1101+5/21-5/2000-1+5/2-1-5/2-1+5/2-1-5/21+5/21-5/2    orthogonal lifted from C2×A5
ρ63333-1-1-1-101-5/21+5/20001+5/21-5/21+5/21-5/21-5/21+5/2    orthogonal lifted from A5
ρ73-3-33-1-11101+5/21-5/2000-1+5/2-1-5/21-5/21+5/2-1-5/2-1+5/2    orthogonal lifted from C2×A5
ρ83-33-31-1-1101-5/21+5/2000-1-5/2-1+5/2-1-5/2-1+5/21-5/21+5/2    orthogonal lifted from C2×A5
ρ933-3-31-11-101+5/21-5/20001-5/21+5/2-1+5/2-1-5/2-1-5/2-1+5/2    orthogonal lifted from C2×A5
ρ103333-1-1-1-101+5/21-5/20001-5/21+5/21-5/21+5/21+5/21-5/2    orthogonal lifted from A5
ρ1133-3-31-11-101-5/21+5/20001+5/21-5/2-1-5/2-1+5/2-1+5/2-1-5/2    orthogonal lifted from C2×A5
ρ123-3-33-1-11101-5/21+5/2000-1-5/2-1+5/21+5/21-5/2-1+5/2-1-5/2    orthogonal lifted from C2×A5
ρ1344-4-400001-1-1-11-1-1-11111    orthogonal lifted from C2×A5
ρ144-44-400001-1-11-1-11111-1-1    orthogonal lifted from C2×A5
ρ15444400001-1-1111-1-1-1-1-1-1    orthogonal lifted from A5
ρ164-4-4400001-1-1-1-1111-1-111    orthogonal lifted from C2×A5
ρ175-5-5511-1-1-10011-1000000    orthogonal lifted from C2×A5
ρ1855551111-100-1-1-1000000    orthogonal lifted from A5
ρ1955-5-5-11-11-1001-11000000    orthogonal lifted from C2×A5
ρ205-55-5-111-1-100-111000000    orthogonal lifted from C2×A5

Permutation representations of C22×A5
On 20 points - transitive group 20T64
Generators in S20
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)
(1 14)(2 13)(3 20)(4 17)(5 16)(6 19)(7 18)(8 15)(9 12)(10 11)

G:=sub<Sym(20)| (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20), (1,14)(2,13)(3,20)(4,17)(5,16)(6,19)(7,18)(8,15)(9,12)(10,11)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20), (1,14)(2,13)(3,20)(4,17)(5,16)(6,19)(7,18)(8,15)(9,12)(10,11) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20)], [(1,14),(2,13),(3,20),(4,17),(5,16),(6,19),(7,18),(8,15),(9,12),(10,11)]])

G:=TransitiveGroup(20,64);

On 24 points - transitive group 24T572
Generators in S24
(1 2)(3 4)(5 6 7 8 9 10 11 12 13 14)(15 16 17 18 19 20 21 22 23 24)
(1 5)(2 10)(3 17)(4 22)(6 16)(7 24)(8 15)(9 23)(11 21)(12 19)(13 20)(14 18)

G:=sub<Sym(24)| (1,2)(3,4)(5,6,7,8,9,10,11,12,13,14)(15,16,17,18,19,20,21,22,23,24), (1,5)(2,10)(3,17)(4,22)(6,16)(7,24)(8,15)(9,23)(11,21)(12,19)(13,20)(14,18)>;

G:=Group( (1,2)(3,4)(5,6,7,8,9,10,11,12,13,14)(15,16,17,18,19,20,21,22,23,24), (1,5)(2,10)(3,17)(4,22)(6,16)(7,24)(8,15)(9,23)(11,21)(12,19)(13,20)(14,18) );

G=PermutationGroup([[(1,2),(3,4),(5,6,7,8,9,10,11,12,13,14),(15,16,17,18,19,20,21,22,23,24)], [(1,5),(2,10),(3,17),(4,22),(6,16),(7,24),(8,15),(9,23),(11,21),(12,19),(13,20),(14,18)]])

G:=TransitiveGroup(24,572);

On 24 points - transitive group 24T573
Generators in S24
(1 2)(3 4)(5 6 7 8 9 10 11 12 13 14)(15 16 17 18 19 20 21 22 23 24)
(1 20)(2 15)(3 12)(4 7)(5 23)(6 16)(8 24)(9 17)(10 18)(11 21)(13 19)(14 22)

G:=sub<Sym(24)| (1,2)(3,4)(5,6,7,8,9,10,11,12,13,14)(15,16,17,18,19,20,21,22,23,24), (1,20)(2,15)(3,12)(4,7)(5,23)(6,16)(8,24)(9,17)(10,18)(11,21)(13,19)(14,22)>;

G:=Group( (1,2)(3,4)(5,6,7,8,9,10,11,12,13,14)(15,16,17,18,19,20,21,22,23,24), (1,20)(2,15)(3,12)(4,7)(5,23)(6,16)(8,24)(9,17)(10,18)(11,21)(13,19)(14,22) );

G=PermutationGroup([[(1,2),(3,4),(5,6,7,8,9,10,11,12,13,14),(15,16,17,18,19,20,21,22,23,24)], [(1,20),(2,15),(3,12),(4,7),(5,23),(6,16),(8,24),(9,17),(10,18),(11,21),(13,19),(14,22)]])

G:=TransitiveGroup(24,573);

C22×A5 is a maximal subgroup of   C22⋊S5
C22×A5 is a maximal quotient of   D4.A5  Q8.A5

Matrix representation of C22×A5 in GL5(𝔽31)

10000
030000
0029310
00282129
00100
,
300000
030000
00010
00100
000030

G:=sub<GL(5,GF(31))| [1,0,0,0,0,0,30,0,0,0,0,0,29,28,1,0,0,3,21,0,0,0,10,29,0],[30,0,0,0,0,0,30,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,30] >;

C22×A5 in GAP, Magma, Sage, TeX

C_2^2\times A_5
% in TeX

G:=Group("C2^2xA5");
// GroupNames label

G:=SmallGroup(240,190);
// by ID

G=gap.SmallGroup(240,190);
# by ID

Export

Character table of C22×A5 in TeX

׿
×
𝔽